

A Crash Course in x86 Assembly for
Reverse Engineers

1 TABLE OF CONTENTS

1 Table of Contents .. 2

1.1 Introduction .. 3

1.2 Bits, bytes, words, double words ... 4

1.3 Registers .. 5

1.3.1 General purpose registers ... 5

1.3.2 Segment registers .. 6

1.3.3 Status flag registers ... 6

1.3.4 EIP - Extended Instruction Pointer .. 7

1.4 Segments & offsets.. 8

1.4.1 The stack ... 8

1.4.2 Stack frames .. 8

1.4.3 The Heap ... 8

1.5 Instructions .. 10

1.5.1 Arithmetic operations - ADD , SUB, MUL, IMUL, DIV, IDIV… 11

1.5.2 Bitwise operations – AND, OR, XOR, NOT ... 12

1.5.3 Branching – JMP, JE, JLE, JNZ, JZ, JBE, JGE… ... 13

1.5.4 Data moving – MOV, MOVS, MOVSB, MOVSW, MOVZX, MOVSX, LEA… .. 14

1.5.5 Loops – LOOP, REP… .. 15

1.5.6 Stack management – POP, PUSH .. 16

1.5.7 Functions – CALL, RET ... 16

1.5.8 Interrupts, Debugger traps – INT, trap flag ... 18

1.6 Calling conventions.. 19

1.6.1 stdcall ... 19

1.6.2 cdecl... 19

1.6.3 pascal... 19

1.6.4 fastcall .. 19

1.6.5 Others calling conventions... 19

1.7 C to x86 assembly ... 20

1.7.1 Single-Branch Conditionals ... 20

1.7.2 Two-way Conditionals .. 21

1.7.3 Logical operations - AND ... 22

1.7.4 Logical operations - OR ... 23

1.7.5 Loops ... 24

1.7.6 Function calls ... 25

1.8 Reverse engineering tools ... 26

1.8.1 OllyDBG tutorials ... 26

1.8.2 IDA Pro tutorials ... 26

1.1 Introduction

The hardest part of learning x86 assembly in 2013 is finding good tutorials. As the popularity
of low level languages decreases the incitement to create fresh up to date tutorials is limited.
At the same time x86 assembly is critical in many security related fields such as malware
analysis, vulnerability research and exploit development.

This document was created to address the lack of tutorials in a fast, pedagogical and cheap
manner. While it is not a complete introduction, it addresses enough to prepare careful
readers with the necessary knowledgebase to be able to decipher non-obfuscated assembly.
And it does so within less than thirty pages.

For pedagogical reasons focus is kept to what the reader assumedly knows about C or C-
based languages (like Java or C#). Hopefully this minimizes the confusion that usually
appears when people are trying to learn a stack based language for the first time.

1.2 Bits, bytes, words, double words

The data “types” in 32 bits assembly are bits, bytes, words, and dwords.

The smallest of them is the bit, which can be either 0 or 1.

A byte is eight bits put together and can be between 0 and 255

A word is two bytes put together, or sixteen bits, and can have a maximum value of 65535.

A dword is two words (d in dword stands for double), four bytes or 32 bits. The maximum

value is 4294967295.

1.3 Registers

A register is a small storage space available as part of the CPU. This also implies that

registers are typically addressed by other mechanisms than main memory and are much

faster to access. Registers are used to store values for future usage by the CPU and they can

be divided into the following classes.

1.3.1 General purpose registers

Used by the CPU during execution. There are eight of them and the original idea of Intel

engineers was that most of these registers should be used for certain tasks (their names hint

the type of task intended). But during the years and the development of Intel architecture

each and every one of these can be used as general purpose register. That is however not

recommended. EBP and ESP should be avoided as much as possible, as using them without

saving and restoring their original values means the functions stack frame will be messed up

and the program will crash.

EAX) Extended Accumulator Register

EBX) Extended Base Register

ECD) Extended Counter Register

EDX) Extended Data Register

ESI) Extended Source Index

EDI) Extended Destination Index

EBP) Extended Base Pointer

ESP) Extended Stack Pointer

All the general purpose registers are 32-bit size in Intel’s IA-32 architecture but depending

on their origin and intended purpose, a subset of some of them can be referenced in

assembly. Below is the complete list.

AX to SP are the 16 bit registers used to reference the 16 least significant bits in their

equivalent 32 bit registers. The eight bit registers reference the higher and lower eight bits

of the 16 bit registers.

1.3.2 Segment registers

Segment registers are used to make segmental distinctions in the binary. We will approach

segments later but in short, the hexadecimal value 0x90 can either represent an instruction

or a data value. The CPU knows which one thanks to segment registers.

1.3.3 Status flag registers

Flags are tiny bit values that are either set (1) or not set (0). Each flag represent a status. For

example, if the “signed” flag is set, the value of FF will represent a -1 in decimal notation

instead of 255. Flags are all stored in special flag register, were many one bit flags are stored

at once. The flags are set whenever an operation resulted in certain state or output. The

flags we are most interested in for now are:

 Z – zero flag, set when the result of the last operation is zero

 32 bits 16 bits 8 bit

 EAX AX AH/AL

 EBX BX BH/BL

 ECX CX CH/CL

 EDX DX DH/DL

 ESI SI

 EDI DI

 EBP BP

 ESP SP

S – signed flag, set to determine if values should be intercepted as signed or

unsigned

O – overflow flag, set when the result of the last operation switches the most

significant bit from either F to 0 or 0 to F.

C – carry flag, set when the result of the last operation changes the most significant

bit

1.3.4 EIP - Extended Instruction Pointer

The instruction pointer has the same function in a CPU as the needle had in those old

gramophones your grandpa used to have. It points to the next instruction to be executed.

1.4 Segments & offsets

Every program consists of several different segments. Four segments that each program

must have are .text, .data, .stack and .heap. The program code is put in .text and global data

is stored in .data. The stack is where, among many things, local variable and function

arguments, are stored and the heap is an extendable memory segment that programs can

use whenever they need more memory space.

1.4.1 The stack

The stack is the part of memory where a program stores local variables and function

arguments (among many things) for later use. It is organized as a “Last In First Out” data

structure. When something is added to the stack, it is added on top of it and when

something is removed, it is removed from the top. Another very important feature about the

stack is that it grows backwards, from the highest memory address to the lowest, more

about that in a moment.

Two registers that are customized to work closely with the stack are the ESP and EBP. The

ESP is the stack pointer and always points to the top of the stack. When something is added

to the stack, the stack grows. This means the ESP needs to be corrected to point to the new

“top” of the stack, which is done by decrementing ESP. Again, this is because the stack grows

backwards, from highest address to lowest.

1.4.2 Stack frames

The EBP is the base pointer but what does base mean? Well, every process has at least one

thread, and every thread has its own stack. And within the stack of every thread, each

function has its own stack frame. The base is the beginning of a stack frame. The main

function in every program has its stack, when it calls a function the called function creates its

own stack frame which is marked out by the EBP that points to the beginning of the

functions stack frame and the ESP that points to the top of the stack. More about this

subject later.

1.4.3 The Heap

The heap is memory space that can be allocated by a process when it needs more memory.

Each process has one heap and it is shared among the different threads. All the threads

share the same heap.

The heap is a Linked-List data structure, which means each item only knows the position of

the immediate items before and after it. When the process does not need the memory

anymore, it is custom to “free” the allocated heap. This is done by de-referencing the no

longer required portion and allowing other processes to use it.

1.5 Instructions

Intel instructions vary in size from one to fourteen bytes. The opcode (short for operation

code) is mandatory for them all and can be combined with other optional or mandatory

bytes to create advanced instructions. This is a vast topic and further reading is done at the

links below for those who want. If not, the disassembler will do the job for you, but it can be

good to know why opcode 83 sometimes is disassembled as an add and other times as an

and instruction when you look in your disassembler. Below links will explain that indirectly.

http://www.swansontec.com/sintel.html

http://ref.x86asm.net/coder32.html

Most instructions have two operators (like add eax, ebx), but some have one (not eax) or

even three ("imul eax, edx, 64"). Instructions that contain something with "dword ptr [eax]"

reference the double word (4 byte) value at memory offset [XXX]. Note that the bytes are

saved in reverse order in the memory as Intel uses Little Endian representation. That means

the most significant bit of every byte is the most left bit.

http://www.swansontec.com/sintel.html
http://ref.x86asm.net/coder32.html

1.5.1 Arithmetic operations - ADD , SUB, MUL, IMUL, DIV, IDIV…

ADD, syntax: add dest, src

Destination and source can be either a register like eax, a memory reference [esp] (anything

surrounded by square brackets is an address reference). The source can also be an

immediate number. Noteworthy is that both destination and source cannot be a memory

reference at the same time. Both can however be registers.

 add eax, ebx ; both dest and src are registers

add [esp], eax ; dest is a memory reference to the top of the stack, source

; is the eax register

 add eax, [esp] ; like the previous example but with the roles reversed

 add eax, 4 ; source is an immediate value

The sub instruction works exactly as the add instruction.

SUB, syntax: sub dest, src

The division and multiplication instructions are a little different, let’s go through division

first.

DIV/IDIV, syntax: div divisor

The dividend is always eax and that is also were the result of the operation is stored. The

rest value is stored in edx.

 mov eax, 65 ; move the dividend into eax

mov ecx, 4 ; move the divisor into ecx

div ecx ; divide eax by ecx, this will result in eax containing 16 and

; edx

; containing the rest, which is 1

IDIV is the same as DIV but signed division.

MUL/IMUL, syntax: mul value

 mul dest, value, value

 mul dest, value

mul/imul (unsigned/signed) multiply either eax with a value, or they multiply two values and

put them into a destination register or they multiply a register with a value.

1.5.2 Bitwise operations – AND, OR, XOR, NOT

AND, syntax: add dest, src

OR, syntax: or dest, src

XOR, syntax: xor dest, src

NOT, syntax: not eax

Bitwise operations are what their name suggests. Two pieces of data are being compared bit

by bit and depending on the operation, the outcome is either a 0 or a 1. Consider below two

values:

 value 1: 10011011

 value 2: 11001001

 output: ????????

If the operation is AND the output would be 10001001 since only the 1
st
, 5

th
 and 8

th
 bits in

both value 1 and 2 are set. That is what AND means, it checks for equally positioned bits that

are both set.

If the operation would be OR, it would check for any set bites and as long as a bit is set in

either value 1 or value 2, it would set the equivalent bit in the output. Hence the result of an

OR would be 11011011.

The XOR is like the OR but with one very important distinction. It will not set bits in the output

were both bits are set, instead it will only set bits that are exclusively set in either value 1 but

not 2, or the other way around. The above example would give the following output:

01010010.

The way XOR works brings an interesting feature, any value XOR:ed with itself will become 0.

Many compilers are making use of this feature of the XOR operation by XOR:ing a register

with itself instead of moving the value 0 into it, as the XOR operation will go faster.

The NOT operation is different to the other bitwise operations as it only takes one value and

inverses every bit. For example the value 11011110 would become 00100001 when NOT’d.

1.5.3 Branching – JMP, JE, JLE, JNZ, JZ, JBE, JGE…

JMP/JE/JLE…etc syntax: jmp address

In assembly, branching is made through the use of jumps and flags. A jump is just an

instruction that under certain circumstances will point the instruction pointer (EIP) to

another portion of the code (much like the “goto” keyword in C). Flags are, as mentioned

previously, tiny one bit values that can be set (1) or not set (0). Most instructions set one or

more flags. Let’s revisit some of the instructions we already looked at and see which flags

they set

ADD can set all of the Z, S, O, C flags (and some more that are of no interest to us right now)

according to the result. Same is true for the SUB instruction.

The AND instruction however always clears the O and C flags, but sets Z and S flags

according to the result.

Depending on which flags are set, a jump will either happen or not. As you see, there are

always only two options in assembly branches and if you think about it, this is also true in all

the more complex type of branches that higher level languages offer. A switch statement in

C for example will always perform or not perform a case, then move on to the next case and

once again decide whether to perform or not perform that case.

Two notes! First of all, most of the time you will see an instruction called CMP (which stands

for compare) being used before a jump. CMP is the ideal pre-branch instruction as it can set

all the status flags and is really fast. The syntax for CMP is: cmp dest, src

This does not mean the other instructions cannot be used before a jump, for example XOR

occurs frequently but the most common is the CMP instruction.

The other important note is about the jump instructions. There are a lot of jump instructions

and nobody can memorize them all. Often there are several jumps that look very much alike.

For example, JLE stands for “Jump Less or Equal”. In C this would be:

 if (x <= y) { do this }

At the same time, JBE stands for “Jump Below or Equal”. Which in C would be:

 if (x <= y) { do this }

So why these different jumps that looks exactly the same in C, one wonders? The answer is

“due to signed and unsigned comparisons”. JLE is used to check the flags after a comparison

between signed variables and JBE for unsigned comparisons. This was just an example,

unless you memorize them all, you always need to read in the Intel Developer’s Guide to see

which flags a jump checks for.

1.5.4 Data moving – MOV, MOVS, MOVSB, MOVSW, MOVZX, MOVSX, LEA…

MOV, syntax: mov dest, src

MOVSB, syntax: movzx dest, src

MOVZX, syntax: movzx dest, src

MOV moves data from source into destination. Both source and destination can be register,

or one of them register and the other one a memory reference. Both cannot be a memory

reference however.

The mov instructions come in many flavours, just like the jump instructions, and partly for

the same reason. MOVS/MOVSB/MOVSW/MOVSD for example copy a byte, word or dword

from source to destination.

The mov instructions that have an X in their name are used for variable extension. In C it

would for example be like a typecast from char to integer, like this

char a = ‘h’;

 int b;

 b = (int)a;

The instructions work like this

 MOVSX) DEST Signextend[SRC]

MOVZX) DEST Zeroextend[SRC]

Where signed means the extension bits will hold the value of one.

Another instruction that can be used for data moving is the LEA instruction. LEA stands for

“Load Effective Address” and the syntax looks like this:

 lea eax, dword ptr[ecx+edx] ; This will store ecx+edx in eax

1.5.5 Loops – LOOP, REP…

Although one can create neat loops using jumps, Intel’s x86 assembly also provides

instructions specifically tailored to create iterating sequences of code. Like many of the

other instructions we looked at, they come with many flavours depending of the size and

sign of the variables they work with. For simplicity reasons, I will only show the easiest cases,

LOOP first:

 mov ecx, 5 ; remember ecx stands for extended counter register

 _proc:

 dec ecx ; decrements ecx

 loop _proc ; loops back to _procs, second row

REP instructions work like LOOP instructions, but are specifically customized to handle

strings (this is where IA-32 assembly almost becomes a high level language in my world).

Syntax: mov esi, str1

 mov edi, str2

mov, ecx, 10h

 rep cmps

What happens here is that the strings to be compared are loaded into ESI and EDI and then a

comparison is performed for 16 bytes (hexadecimal value 0x10 = 16 in decimal notation). If

at some point the source and destination are not equal, a flag will be set and the operation

will be aborted.

1.5.6 Stack management – POP, PUSH

POP, syntax: pop dest

PUSH, syntax: push var/reg

The POP and PUSH instructions are probably the easiest instructions in assembly. They both

do what their names suggest to the stack. The POP instruction pops a value or memory

address (which also is a value) from the stack and stores it in the destination. Additionally it

also increments the stack pointer (ESP) to point to the new top of the stack (remember the

stack grows backwards which means higher addresses when it shrinks).

The PUSH instruction pushes a value to the stack and decrements the stack pointer to point

to the new top.

1.5.7 Functions – CALL, RET

Wake up, this is going to become a bit heavy as I’ve seen many people make mistakes

here!

CALL is like a jump with several differences. A jump instruction loads an address into EIP and

continues execution from there. A CALL however stores the current EIP on the stack, with

the expectation to reload it once the calleé (that is the called function) is done. A jump

instruction has no way to do that as the current position of the EIP is not stored.

CALL, syntax: CALL _function

When the above instruction is reached, following steps occur.

1. EIP is stored to the stack ; This is done by the CALL instruction

2. EBP is stored to the stack ; This is where the heavy will start as this is

3. EBP is made to point to ESP ; actually a “calling convention” abstraction

4. ESP is decremented to, among several things, contain the local variables of

_function

5. EIP is loaded with the address of _function

Point 1 is performed by the CALL instruction, while point 2 and 3 are performed…by what?

So here comes a very important distinction between assembly and binaries. Assembly is

the instruction set of the architecture. It can be x86, ARM, PowerPC, RISC, etc…

A binary program is however

1) assembly instructions for a certain architecture meant to run on…

2) …a certain operating system…

3) …compiled by a certain compiler

For example, Windows binary files follow the PE format while Linux binary files follow the

ELF format. And different compilers will give different output binary for the same C-code.

In the five step ladder above, point 1 is performed by the CALL instruction while there is no

specific instruction for point 2 and 3. These are instead written into the binary, as separated

push and and mov instructions and referred to as a “function prolog”, which look like this:

push ebp

mov ebp, esp

sub esp, 10h ; The value 10h is an example value

When a calleé has finished executing, the caller’s EBP is popped back into the EBP.

Then the RET instruction removes the stack-frame of the calleé by incrementing the ESP

(again, remember the stack shrinks when incremented) and pop the old saved EIP into EIP so

that execution can continue where it left of.

RET, syntax: RET / RET num

Mindful readers might now be thinking: “But hey, when I write functions in C I sometimes

choose to declare return values, what happens to those?”

I’m glad you asked and the answer is that the return value, as we know it in C, is stored in

EAX before the execution is returned to the caller.

1.5.8 Interrupts, Debugger traps – INT, trap flag

INT, syntax: int num ; were “num” represents an interrupt handler

Interrupts are used to tell the CPU to halt the execution of a thread. They can be hardware

based, software based or exception based (for example unauthorized memory access

attempt). When the INT instruction is hit, the execution is moved to an exception handler,

which is defined by num. Some INT flavours do not require a num value, INT3 for example.

When a software based breakpoint is set in an assembly level debugger like OllyDBG the

instruction where the breakpoint is supposed to hit is exchanged to an int3 instruction,

which has the hexadecimal value of 0xCC. And when the interrupt is hit, the control of the

thread is handed back to the debugger. At the same time, the trap flag is set. When a

program is single stepped in a debugger, the CPU is checking for the trap flag. If the trap flag

is set, the CPU will execute one instruction and give control of the thread back to the

debugger.

Again, there are other flavours of breakpoints like conditional breakpoints, memory

breakpoints and hardware breakpoints. This was just a detailed explanation of software

breakpoints to demonstrate the idea of breakpoints.

1.6 Calling conventions

The previous chapter discussed the CALL and RET instructions and some in-detail description

off what happens on the stack during a function call. The problem with that description is

that it depends on the compiler and hence is not always true.

1.6.1 stdcall

The calling convention we described before is named stdcall. In the stdcall, function

arguments are passed from right to left and the calleé is in charge of cleaning up the stack.

Return values are stored in EAX. The stdcall is a combination of two other calling

conventions, pascal and the cdecl.

1.6.2 cdecl

The cdecl (short for c declaration) is a calling convention that originates from the C

programming language and is used by many C compilers for the x86 architecture. The main

difference of cdecl and stdcall is that in a cdecl, the caller, not the calleé, is responsible for

cleaning up the stack.

1.6.3 pascal

The pascal calling convention origins from the Pascal programming language and the main

difference between it and stdcall is that the parameters are pushed to the stack from left to

right.

1.6.4 fastcall

The fastcall is a non-standardized calling convention. It is usually recognized through the

way it sends function arguments. While all the above conventions use the stack to store the

function arguments, the fastcall convention tends to load them into registers. This results in

less memory interaction and increases the performance of a call, hence the name.

1.6.5 Others calling conventions

This was just a fast introduction to some of the most common calling conventions. Both

Wikipedia and Intel have great summaries on this topic, for those who favour more in-deep

knowledge.

http://en.wikipedia.org/wiki/X86_calling_conventions

http://en.wikipedia.org/wiki/X86_calling_conventions

1.7 C to x86 assembly

1.7.1 Single-Branch Conditionals

1.7.1.1 C

 if (var == 0) {

 aFunction();

 }

 // AfterCondition

 …

1.7.1.2 x86 assembly

 mov eax, [var]

 test eax, eax

 jnz AfterCondition

 call aFunction

 AfterCondition:

 ...

1.7.2 Two-way Conditionals

1.7.2.1 C

 if (var == 7)

 function();

 else

 anotherFunction();

 …

1.7.2.2 x86 assembly

cmp [var], 7

 jz ElseBlock

 call function

 jmp AfterConditionalBlock

 ElseBlock:

 call anotherFunction

 AfterConditionalBlock:

 ...

1.7.3 Logical operations - AND

1.7.3.1 C

if (var1 == 100 && var2 == 50)

 bla bla;

 ...

1.7.3.2 x86 assembly

cmp [var1], 100

 jne AfterCondition

 cmp [var2], 50

 jne AfterCondition

 bla bla

 AfterCondition:

 ...

1.7.4 Logical operations - OR

1.7.4.1 C

if (var1 == 100 || var2 == 50)

 function();

 ...

1.7.4.2 x86 assembly

cmp [Variable1], 100

 je ConditionalBlock

 cmp [var2], 50

 je ConditionalBlock

 jmp AfterConditionalBlock

 ConditionalBlock:

 call function

 AfterConditionalBlock:

 ...

1.7.5 Loops

1.7.5.1 C

c = 0;

 while (c < 1000) {

 array[c] = c;

 c++;

 }

1.7.5.2 x86 assembly

mov ecx, DWORD PTR [array]

 xor eax, eax

 LoopStart:

 mov DWORD PTR [ecx+eax*4], eax

 add eax, 1

 cmp eax, 1000

 jl LoopStart

1.7.6 Function calls

1.7.6.1 C

function (int x, char y);

1.7.6.2 x86 assembly

mov eax, y

 push eax

 mov eax, x

 push eax

 call function

1.8 Reverse engineering tools

The most common reverse engineering tools are a debugger, a disassembler and a hex

editor. Branch standard for the former two are OllyDBG and IDA Pro. HxD is an easy,

lightweight and powerful hex editor. Although a hex editor rarely requires an introduction,

Olly and IDA certainly do.

1.8.1 OllyDBG tutorials

http://thelegendofrandom.com/blog/archives/31

http://thelegendofrandom.com/blog/archives/115

1.8.2 IDA Pro tutorials

https://www.hex-rays.com/products/ida/support/tutorials/

http://thelegendofrandom.com/blog/archives/31
http://thelegendofrandom.com/blog/archives/115
https://www.hex-rays.com/products/ida/support/tutorials/

