13 July 2015
~4 min
By saif
Wireless: it’s everywhere these days and yet owning it never gets boring.
As part of our annual SensePost hackathon, where we get time off projects and get to spend a week tinkering with tech and ideas, the team I was in, consisting of Dominic, Nathi and myself, decided on creating a wireless rifle de-authentication gun, which utilized a yagi antenna and a Raspberry Pi.
The idea was simple: simulate some of the tools available in aircrack-ng wireless hacking suite in one script but without utilizing aircrack-ng in the process.
13 June 2014
~4 min
By glenn
Friday the 13th seemed like as good a date as any to release Snoopy 2.0 (aka snoopy-ng). For those in a rush, you can download the source from GitHub, follow the README.md file, and ask for help on this mailing list. For those who want a bit more information, keep reading.
What is Snoopy? Snoopy is a distributed, sensor, data collection, interception, analysis, and visualization framework. It is written in a modular format, allowing for the collection of arbitrary signals from various devices via Python plugins.
07 April 2014
~6 min
By daniel
What originally started as one of those “hey, wouldn’t this be cool?” ideas, has blossomed into a yearly event for us at SensePost. SenseCon is a time for all of us to descend on South Africa and spend a week, learning/hacking/tinkering/breaking/building, together and in person.
A few years ago we made the difficult, and sometimes painful, shift to enable remote working in preparation for the opening of our UK and Cape Town offices. Some of you probably think this is a no-brainer, but the benefit of being in the same room as your fellow hackers can’t be overlooked. Being able to call everyone over to view an epic hack, or to ask for a hand when stuck is something tools like Skype fail to provide. We’ve put a lot of time into getting the tech and processes in place to give us the “hackers in the same room” feel, but this needs to be backed with some IRL interaction too.
Aah, January, a month where resolutions usually flare out spectacularly before we get back to the couch in February. We’d like to help you along your way with a reverse engineering challenge put together by Siavosh as an introduction to reversing, and a bit of fun.
The Setup This simple reversing challenge should take 4-10+ hours to complete, depending on your previous experience. The goal was to create an interactive challenge that takes you through different areas of the reverse engineering process, such as file format reverse engineering, behavioural and disassembly analysis.
We are publishing the research paper and tool for our BlackHat 2013 USA talk on the Z-Wave proprietary wireless protocol security. The paper introduces our Z-Wave packet interception and injection toolkit (Z-Force) that was used to analyze the security layer of Z-Wave protocol stack and discover the implementation details of the frame encryption, data origin authentication and key establishment process. We developed the Z-Force module to perform security tests against the implementation of the Z-Wave security layer in encrypted home automation devices such as a door locks. The paper describes the details of a critical vulnerability discovered in a Z-Wave door lock that could enable an attacker to remotely take full control of the target device without knowledge of the network encryption key. The Z-Force download archive contains the GUI program and two radio firmware files for the receiver and transmitter TI CC1110 boards.
This research will also be presented at 44Con 2013 in London next month, followed by the release of Z-Force source code and US frequency support (908.4 MHz) in the firmware.
A cloud storage service such as Microsoft SkyDrive requires building data centers as well as operational and maintenance costs. An alternative approach is based on distributed computing model which utilizes portion of the storage and processing resources of consumer level computers and SME NAS devices to form a peer to peer storage system. The members contribute some of their local storage space to the system and in return receive “online backup and data sharing” service. Providing data confidentiality, integrity and availability in such de-centerlized storage system is a big challenge to be addressed. As the cost of data storage devices declines, there is a debate that whether the P2P storage could really be cost saving or not. I leave this debate to the critics and instead I will look into a peer to peer storage system and study its security measures and possible issues. An overview of this system’s architecture is shown in the following picture:
25 September 2012
~13 min
By glenn
At this year’s 44Con conference (held in London) Daniel and I introduced a project we had been working on for the past few months. Snoopy, a distributed tracking and profiling framework, allowed us to perform some pretty interesting tracking and profiling of mobile users through the use of WiFi. The talk was well received (going on what people said afterwards) by those attending the conference and it was great to see so many others as excited about this as we have been.
10 September 2012
~1 min
By behrang
Today’s smart cards such as banking cards and smart corporate badges are capable of running multiple tiny applications which are often written in high level programming languages like Java or Microsoft .NET and compiled into small card resident binaries. It is a critical security requirement to isolate the execution context and data storage of these applications in order to protect them from unauthorized access by other malicious card applications. To satisfy this requirement, multi-application smart cards implement an “Application Firewall” concept in their operating system which creates an execution sandbox for card applications.
There has been a healthy reaction to our initial post on our research into the RSA SecureID Software Token. A number of readers had questions about certain aspects of the research, and I thought I’d clear up a number of concerns that people have.
The research pointed out two findings; the first of which is in fact a design vulnerability in RSA software’s “Token Binding” mechanism. The second finding is another design issue that affects not only RSA software token but also any other software, which generates pseudo-random numbers from a “secret seed” running on traditional computing devices such as laptops, tablets or mobile phones. The correct way of performing this has been approached with hardware tokens, which are often tamper-resistant.
Widespread use of smart phones by employees to perform work related activities has introduced the idea of using these devices as an authentication token. As an example of such attempts, RSA SecureID software tokens are available for iPhone, Nokia and the Windows platforms. Obviously, mobile phones would not be able to provide the level of tamper-resistance that hardware tokens would, but I was interested to know how easy/hard it could be for a potential attacker to clone RSA SecureID software tokens. I used the Windows version of the RSA SecurID Software Token for Microsoft Windows version 4.10 for my analysis and discovered the following issues: